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We measure the threshold accelerations necessary to excite surface waves in a vertically 
vibrated fluid container (the Faraday instability). Under the proper conditions, the 
thresholds and onset wavelengths agree with recent theoretical predictions for a 
laterally infinite, finite-depth container filled with a viscous fluid. Experimentally, 
we show that by using a viscous, non-polar fluid, the finite-size effects of sidewalls 
and the effects of surface contamination can be made negligible. We also show that 
finite-size corrections are of order h/L,  where h is the fluid depth and L the container 
size. Based on these measurements, one can more easily interpret certain unexpected 
observations from previous experimental studies of the Faraday instability. 

1. Introduction 
In this paper, we measure the onset of parametrically pumped surface waves in 

a setting commonly known as the Faraday instability (Faraday 1831). A container 
of fluid, paraffin oil in our case, is vertically vibrated at a given frequency and 
amplitude. Above an acceleration threshold, waves spontaneously appear at the 
surface of the fluid, vibrating at precisely half the driving frequency. In a large box, 
the wavelength at onset is well-defined. We measure both the acceleration threshold 
and onset wavelength as a function of the driving frequency, fluid properties, and 
sample geometry. 

There are two reasons for undertaking this study. Previous investigations of thresh- 
olds have often disagreed with theoretical predictions or have required uncontrolled 
parameter fits, with no test as to the accuracy of the parameters deduced. Additional 
physical processes were also postulated with no test as to their relevance. (See 93, 
below.) Second, an understanding of linear-stability analysis is a prerequisite for ex- 
ploring the nonlinear regime and can help in the interpretation of otherwise-confusing 
observations. (See the discussion of coherence lengths in 96, below.) 

In retrospect, the poor contact between theory and experiment is not surprising, as 
so many physical processes were at play in many experiments that it was impossible 
to sort them out. Also, there was, until the recent calculation by Kumar & Tuckerman 
(1994), only an approximate theoretical treatment of the effects of viscosity on the 
instability. Although Kumar & Tuckerman compare their theory with two previous 
experiments (Fauve et aZ. 1992; Edwards & Fauve 1993, the arguments in the latter be- 
ing presented in more detail in Edwards & Fauve 1994), the data do not cover some of 
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the more interesting parameter regimes and material parameters had to be fit to gain 
agreement . 

The second reason for careful threshold measurements is linked to the use of 
the Faraday experiment as a setting for the exploration of general issues in pattern 
formation and complex dynamics. Three lines of work may be noted: (i) ‘dynamical- 
systems’ studies of the nonlinear interactions between a small number of modes that 
interact, often chaotically (e.g. Gollub & Meyer 1983; Ciliberto & Gollub 1984, 1985; 
Simonelli & Gollub 1989); (ii) onset of spatiotemporal chaos (e.g. Ezerskii, Korotin 
& Rabinovich 1985; Tufillaro, Ramshankar & Gollub 1989; Gollub 1991; Gluckman 
et al. 1993; Bosch & van de Water 1993); (iii) stationary pattern formation near onset 
(Christiansen, Alstrom & Levinsen 1992, 1995 ; Edwards & Fauve 1992, 1993; Muller 
1993). As has been found to be the case in other experiments on hydrodynamic 
instabilities (Rayleigh-Bknard convection, Taylor-Couette flow), understanding of 
these dynamical phenomena is greatly enhanced if contact can be made with the 
fundamental equations of motion (Cross & Hohenberg 1993). Quantitative agreement 
between experiment and theory for thresholds is, from this point of view, the starting 
point for more detailed understanding of the nonlinear phenomena referred to here. 

Work in the latter two categories implicitly assumes that the container size is large 
(‘large aspect ratio’). As Edwards in particular has emphasized (private communi- 
cation and Edwards & Fauve 1993), experiments conducted on low-viscosity fluids 
show significant finite-size effects even when the container is many wavelengths large. 
We shall illustrate these effects explicitly and thereby contrast the experiments on 
low-viscosity fluids, which give results very different from other pattern-forming sys- 
tems (Cross & Hohenberg 1993), with experiments on high-viscosity fluids (Edwards 
& Fauve 1992, 1993; Muller 1993). 

As we shall see, the main issue concerns the ways in which fluid viscosity leads to 
energy dissipation. Many possible contributions have been discussed and evaluated, 
including fluid shear localized to the surface, boundary layers at the bottom plate 
and sidewalls of the container, motion of the surrounding air, the moving contact 
line, and the surface viscosity of a surfactant film. We shall show that a proper 
choice of experimental fluid and of sample geometry can render all but the first 
insignificant. We shall also see in a systematic way how some of the other effects 
enter and, hence, how they may be avoided. Conducting an experiment under such 
conditions has the advantage that one can be confident that the physical model used 
is correct. (This is important if they are to be the basis for nonlinear perturbative 
expansions.) 

In $2, we review previous theoretical work and summarize the calculation of 
Kumar & Tuckerman, adapted to our particular case. In $3, we review previous 
experimental work on threshold measurements. In $4, we describe our experimental 
apparatus. In $5, we present our results. Jn $6, we discuss the implications of 
these results for the design and interpretation of pattern-formation experiments. An 
appendix summarizes measurements of fluid properties. 

2. Theoretical background 
The first systematic exploration of surface waves on a vertically vibrated fluid was 

by Faraday in 1831. His very broad investigations are still worth reading today. 
Perhaps his most important finding was that the surface waves vibrate at precisely 
half the forcing frequency, a result confirmed by Rayleigh (1883b). The 2:l frequency 
ratio between the driving pump and the response is the characteristic of parametric 
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resonance, where the excited modes are forced by periodically altering their proper 
frequency (by modulating gravity in this case). An everyday example of parametric 
resonance is the child’s swing. 

Parametric resonance is modelled by the Mathieu equation, which describes the 
pumping of a simple harmonic oscillator by periodic variation of its proper frequency 
(Landau & Lifshitz 1976, $27). A displacement x(t) of a harmonic oscillator obeys 

x + 2puk + oi(t)x = 0, (2.1) 

wi(t) = wi[1 +rcoswt]. (2.2) 
In (2.1), p is the damping rate. In (2.2), E is the amplitude of the pump at frequency 
w. An analysis of the Mathieu equation shows that the E - w parameter plane is 
divided into regions where the amplitude x goes to zero at long times (assuming finite 
damping) and regions (‘resonance tongues’) where it grows exponentially without 
bound. This is parametric resonance. (Nonlinear terms, of course, saturate the 
instability at finite amplitude.) Parametric resonance occurs for small pumping at 
frequency ratios w/wo m 2/n, for n = 1,2,3, .... We refer to the odd-n tongues as 
subharmonic and the even-n tongues as harmonic. Inside the nth resonance tongue, 
the frequency of vibration is precisely (n/2)w. 

When the damping p = 0, there is parametric resonance at zero E for w/og  = 2/n, 
but finite damping rates push up the thresholds. For the 2:l tongue, the small-damping 
threshold is (Landau & Lifshitz 1976, $27) 

Here, 6 = w - 2w0 is the detuning from exact 2:l resonance. Note that the lowest 
threshold for the 2:l tongue occurs when 6 = 0. Tongues with larger n have larger 
thresholds; for small damping, they go as p1ln. 

Although Rayleigh (1883a) had suggested that the waves excited in Faraday’s 
experiment were the result of a parametric resonance obtained by modulating gravity, 
it was not until 1954 that Benjamin & Ursell derived this result from the inviscid 
Euler equations. They showed that each normal mode of a surface wave obeys its 
own Mathieu equation. For a laterally infinite fluid of depth h, the normal modes are 
eik’r, where k is a two-dimensional horizontal wavevector and r = (x ,y ) .  The surface 
of the fluid is then expanded as 

((x, y, t) = [I dk[k(t)eik’r. 

The amplitudes of the modes &(t) obey Mathieu equations of the form 

where the frequency of each mode is given by 

oi(t) = g(t)k + -k tanhkh. ( ; 3 )  

Here, k is the magnitude of the wavenumber k,  p is the fluid density, y is the surface 
tension, h is the depth of the fluid layer, and g(t) = g - a  cos wt is the acceleration due 
to gravity, as measured in a reference frame moving up and down with the vertically 
vibrating fluid. The applied acceleration has amplitude a and frequency cr). Below, we 
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shall occasionally use the high-frequency, large-depth limit of (2.6), 
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Y - -k3, 
P 

to make numerical estimates. For parametrically excited surface waves, wo is just half 
the driving frequency o. 

The derivation by Benjamin & Ursell ignores the effects of viscosity and, indeed, 
cannot be directly extended to include it. The traditional approach is to compute 
the energy dissipation of each mode based on an integral over the flow field o f the  
inviscid solution, which gives p = 2vk2 in laterally unbounded, deep containers. (See, 
for example, Miles & Henderson 1990; Milner 1991; and Miles 1993.) It turns out 
that this result is correct only to first order in v k 2 / o  (0 here being the applied pump 
frequency). Moreover it is simply impossible, once damping is introduced, to find a 
set of uncoupled Mathieu equations for the amplitudes of each normal mode of the 
surface waves. (For small viscosities, however, one can write perturbative equations 
that do decouple at first order in v k 2 / o .  This fact explains why the derivation by 
Benjamin & Ursell was successful.) The difficulty here is a familiar one in classical 
mechanics : for damped oscillators, one cannot in general find uncoupled equations 
for time-independent normal modes (Goldstein 1980, pp. 265-268). 

Recently, Kumar & Tuckerman (1994) have done a complete linear-stability analysis 
starting from the full Navier-Stokes equations. They use the periodicity of the external 
pump to write the equations as a Floquet problem, which they solve numerically. The 
general strategy is to use Floquet's theorem to write the vertical velocity in the form 

vZ(z, t )  = e(s+ia)tU"z(z, t),  (2.8) 
where v", is periodic in time with period 271/0. Fourier expanding v",, we rewrite (2.8) 
as 

n=-w 

Similarly, the interface position [ ( t )  may be written 
w 

n=--cO 

The multiplier a can always be chosen in the range 0 to m/2. As Kumar & Tuckerman 
discuss, only a = 0 and a = 0 / 2  lead to instability; for all other values of a, the 
interface is always stable. The case a = o / 2  corresponds to subharmonic fluid 
motions, while a =  0 corresponds to harmonic fluid motions. 

The next step is to substitute these forms for u, and 5 into the equations of motion. 
One finds a complicated equation of the form 

A n i n  = 4 5 n + l  + 5,-1). (2.11) 

The right-hand side of (2.11) comes from expressing the forcing amplitude acosot  
in terms of its Fourier coefficients. It is independent of fluid properties and 
contains information about the forcing function only. The left-hand side, with 
A,  = A,(k, v ,  g, y / p ,  s, a) carries information concerning the fluid properties. Equation 
(2.11) is one of an infinite set of coupled equations, the coupling occurring through 
the right-hand side. To analyse the problem numerically, one can truncate the Fourier 
series at some maximum harmonic N .  As Kumar & Tuckerman point out, the equa- 
tions are solved most conveniently by setting the desired growth rate s = 0 in A,  
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and solving for the acceleration a as an eigenvalue problem. This is precisely the 
inverse of the strategy usually employed in linear-stability analyses, which ordinarily 
seek a function s(k) representing the growth rate of a perturbation of wavenumber k. 
The inverse strategy is advantageous because the equations are linear in a but highly 
nonlinear in s. Following Kumar & Tuckerman, the N complex equations (2.11) can 
be written as a 2N x 2N real matrix equation of the form 

A( = aB( (2.12) 

where A and B are 2N x 2N real matrices. The A matrix contains information about 
the fluid properties and is 2 x 2 block diagonal. The B matrix contains information 
about the parametric forcing and may be easily generalized to more complicated 
forcing functions, for example the two-frequency wave forms used by Edwards & 
Fauve (1992, 1993). Equations (2.11) may be converted to a standard eigenvalue 
problem by inverting A, so that 

1 
a 

u( = A-’B[ = -(. (2.13) 

The above equation is then solved numerically to a given order in N using a standard 
eigenvalue routine. 

A complete solution requires explicit expressions for A,. We note that in the 
absence of external forcing, the derivation mirrors the one we would have done to 
find the dispersion relation for surface waves. Let 9 ( y ,  k)  = 0 represent this dispersion 
relation, with Re y = s the decay rate and Im y = w the vibration frequency. The A,  
may then be written 

(2.14) 

Rev, = s, Imy, = a + nw. (2.15) 
For inviscid fluids of finite depth h, the dispersion function 9 is (Landau & Lifshitz 
1987, p. 247) 

9 h o ( y ,  k) = y 2  coth hk + &. (2.16) 
For fluids of infinite depth but large viscosity, the dispersion function is (Lamb 

9mv(y,k) = (y  + + 002 - 4v2k3rc, (2.17) 

where rc2 = k2 + y/v. To first order in vk2 /oo ,  the damping rate implied by gmV 
= 0 is s = -2vk2, which is the result obtained by the phenomenological theories 
based on the Mathieu equation. These theories do not incorporate the terms of order 
v2k4 in (2.17) and thus are inaccurate at higher viscosities and frequencies. (At high 
frequencies, vk2/wo - VW;’~.) 

For fluids of finite depth and large viscosity, we used the computer-algebra program 
Milo to find: 

2 
-4, = j y W n , k ) ,  

1932, $349; Landau & Lifshitz 1987, p. 94) 

4v2k3rc [-echK + (1  + (y/2vk2)echk) + B tanh hk] 
sinh hrc , (2.18) + 

(1 + y/2vk2) (tanh hrc + x/k) echk - (1  + tanh hrc) echK (rclk) 
tanh hrc - tanh hk (rc/k) 

B =  (2.19) 
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One can verify that for large depth (hk and hrc* l), B -+ 0 and Bhv(y, k )  -+ 2mv(y,k). 
In our own calculations, we treated the case of finite depth and viscosity, using (2.18) 

and (2.19). We have not treated the case of a laterally finite sample. The only boundary 
conditions that may readily be treated are the inconvenient ‘brimful condition’ and 
the unrealizable free boundary. The former case was first considered by Benjamin & 
Scott (1979) and later used for the Faraday experiment by Douady & Fauve (1988) 
and Douady (1990). The idea is to fill a partially wetting fluid up to the brim of 
the container, where the meniscus will be pinned. The at-rest solution assumed as a 
starting point for the above stability analysis then remains valid in this finite geometry. 
In practice, setting up brimful conditions is delicate. Small mechanical imperfections 
lead to measurable meniscus waves. A second tractable situation occurs when the 
contact angle remains 90” while sliding up and down the sidewalls of the container. 
This is not a realistic condition, since the contact angle in general varies with the 
velocity. Such ‘contact-angle hysteresis’ has been discussed by Hocking (1987). The 
walls then emit meniscus waves at accelerations much below the onset of parametric 
resonance. (The meniscus waves are directly forced by the sidewalls and oscillate at 
the driving frequency.) Our approach will be to find conditions where the sidewalls 
do not influence bulk behaviour. 

The result of the stability calculation is a plot of the boundaries of stability 
tongues. We follow Kumar & Tuckerman and plot the tongues as a function of 
the wavenumber k of the perturbation. Representative plots are shown in figure 1. 
The actual acceleration threshold is obtained by scanning over k for the lowest 
acceleration that will produce an instability. For each plot of tongues, this gives one 
point. Except for very shallow depths, the 2:l tongue has the lowest threshold. Since 
a continous spectrum of modes k is available in the infinite container, an arbitrary 
pump frequency w results in a response at w/2 with no detuning. 

For finite geometries, the damping rates are increased because of shearing against 
the sidewalls. (If the fluid has a finite contact angle at the wall, there will be 
additional dissipation due to the hydrodynamic singularity at a moving contact line. 
See Milner 1991.) The number of modes also becomes quantized. This means that 
for an arbitrary pump frequency w, there no longer is automatically a fluid mode of 
frequency w/2. The mode that is finally excited is detuned from its proper frequency 
and has a higher threshold as a result. The threshold curve then has a scalloped 
shape, as the resonance tongue of each successive mode is explored by.varying the 
frequency. 

3. Previous experimental work 
There have been an enormous number of experiments on the Faraday instability. 

Here, we restrict our attention to those that discuss thresholds. The experiments may 
be divided between small-aspect-ratio experiments and large-aspect-ratio experiments. 
We also restrict our attention to those experiments where the parametric forcing is 
applied to the gravitational acceleration. A number of other forcing schemes (electric, 
magnetic, acoustic, optical, thermal) have been reviewed by Nevolin ( 1984). 

3.1. Small-aspect-ratio experiments 
Beginning with the work of Benjamin & Ursell (1954), there have been a number of 
studies of thresholds in small systems. See Miles & Henderson (1990) for a review. 
Most of these experiments used water as a working fluid. As discussed below (see 
$4.1), there is almost always a contaminating film on top of water. This film lowers the 
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FIGURE 1. Resonance tongues calculated from the Kumar & Tuckerman (1994) theory. Note the 
alternating subharmonic (S) and harmonic (H) tongues. (a) Water at 20 "C (v = 0.01 cm2s-'); 
(b)  oil at 55 "C (v  = 0.26 cm2s-'); (c) oil at 23 "C (v = 1.28 cm2s-'). Note that increasing the 
fluid viscosity rounds the tongue bottoms and raises the thresholds. The tongues are calculated for 
a driving frequency of 50 Hz. 

surface tension and increases the viscous damping. For example, Henderson & Miles 
(1990) measured the thresholds in a small cylinder and a small rectangle, using water 
treated with Photoflo. Although in the cylinder they found that the thresholds matched 
their predictions reasonably well, in the rectangle the deduced value of the viscosity 
was ten times that of water and the frequency dependence of the damping rate did 
not match their theoretical predictions. In this case, using the measured damping rate 
brought the measured thresholds into agreement with the predictions. (The predictions 
used the inviscid flow field to estimate damping by boundary layers at the top, bottom 
and sides of the fluid. They neglected damping caused by the surfactant film.) 

Finally, Douady & Fauve (1988) and Douady (1990) studied the effect of sidewall 
conditions on thresholds. When the meniscus is pinned, mode-quantization effects 
increase greatly. They also showed that even in relatively small boxes, a continuous 
spectrum of modes was available if the meniscus was not pinned. In effect, when the 
meniscus is free to move, the boundary conditions are 'soft'. Douady made several 
measurements of acceleration thresholds as a function of driving frequency but he 
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did not attempt to compare his results to any theoretical predictions. Wavelength 
measurements on ‘polluted‘ water could be well-fit to the inviscid dispersion relation 
and gave a surface tension of 29.5 dynes cm-’, compared to 72.5 dynes cm-’ for pure 
water. 

For the small-aspect-ratio measurements, there is at best partial agreement with 
theoretical predictions. One reason is that in these experiments, the viscous damping 
due to the surface, the bottom, the sidewalls and (often) the surfactant are all 
important. Below, we find conditions where these effects enter separately in well- 
controlled ways. 

3.2. Large-aspect-ratio experiments 
Experiments in large cells or at high frequencies are less common than small-aspect- 
ratio experiments, and only a few discuss threshold measurements. Both Christiansen 
et al. (1992) and Bosch & van de Water (1993) find agreement between predicted 
and measured thresholds, but not enough details are provided to assess their claims. 
A recent manuscript by Christiansen et al. (1995) shows that quantitative agreement 
on thresholds can be obtained in a low-viscosity fluid if one is careful. They find, 
notably, that the energy dissipated by the moving contact line is 10-20% of the total 
energy dissipation. The theoretical estimates of this dissipation require knowledge of 
the microscopic cutoff lengths and roughness of the wall surfaces. Their values are 
guessed in the paper by Christiansen et al., but fortunately the theory is not very 
sensitive to the precise values adopted. 

Fauve et al. (1992) report observations of a C02 liquid-vapour cell near the 
critical point. As the authors note, the perturbative theories do not give good 
agreement, especially close to the critical point. These data, as well as unpublished 
data by Edwards & Fauve on water-glycerine mixtures, are analysed by Kumar & 
Tuckerman. They find good agreement in the latter case, when the surface tension 
and viscosity are free parameters. We note, though, that they deduce a viscosity 
of v = 1.02 cm2 s-l while Edwards & Fauve quote v = 0.85 f 0.05 cm2 s-l. Small 
errors in the temperature or concentration of water could plausibly account for the 
differences, as could surface contamination. 

Kumar & Tuckerman fit the data of Fauve et al. (1992) for a number of tempera- 
tures. Far from the critical point, the parameter values they deduce, are in ‘excellent’ 
to ‘fairly good’ agreement with measured values in the literature. Closer to the critical 
point, they still find good threshold and wavelength fits but some parameters ( v ,  
q i q u i d ,  and quapour) have not been measured. At frequencies below 20 Hz, they find 
discrepancies between the fit curves and the data. They suggest that sidewall damping 
could be responsible. Close to the critical point, mixing between the two phases and 
the large fluid compressibility may be important, too. 

4. Experimental apparatus 
Our apparatus is based loosely on the design of Edwards & Fauve (1992, 1993). A 

number of issues must be addressed in designing the experiment. These include the 
choice of fluid, the mechanical properties of the vibrating container, the boundary 
conditions, temperature control, and visualization. We consider each of these in turn. 

4.1. Choice offluid 
As we have seen, many previous experiments have used water or aqueous solutions. In 
our opinion, this seriously complicates the interpretation of the experiments. Because 
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of its high surface tension, water attracts contaminants to its surface, drastically 
reducing the surface tension. Crudely speaking, contaminants gather at the surface 
because the combined water-contaminant and contaminant-air surface tensions are 
lower than the original water-air value. This is inconvenient because one must 
closely monitor the actual surface tension of the fluid used in the experiment. Water 
nominally has a surface tension of 72.5 dynes cm-’, but Faraday experiments using 
water have deduced values of 48 dynes cm-’ (Henderson, quoted in Miles 1992). 

Although the large variation of surface tension is a serious problem, one might 
think that it suffices to measure it and use the result in the formulas quoted above. 
Unfortunately, this is not the only modification. As has been known since Roman 
times, an oily film on water greatly increases the damping of surface waves. (Experi- 
ments on this effect were carried out by Benjamin Franklin; see Tanford 1989 for a 
historical account and Lamb 1932, $351 and Miles 1967 for quantitative treatments.) 
This complicates the calculations required and means that other parameters must 
be measured (surface viscosity, compressibility, etc.). The simplest way around these 
problems is to use an oil as the working fluid. Typical surface tensions are 20 to 
30 dynes cm-’ and contamination at the surface is no longer important. 

Another consideration is the fluid viscosity. As Edwards & Fauve (1993) have 
argued, low-viscosity fluids lead to several kinds of difficulties. To have an effectively 
infinite container, the damping length of surface waves must be less than the container 
size. (One can define the damping length of a standing wave to be that of its left- and 
right-travelling components.) Since higher viscosities have shorter damping lengths, 
that is already one reason for choosing high-viscosity fluids. More precisely, if we 
take the damping rate to be 2vk2, then the decay length of capillary waves is, by 
(2.7), approximately /decay = (:w/k)/(2vk2) = y/(4vpw) so that one can reduce the 
damping length by increasing either the viscosity or the pump frequency. Since higher 
frequencies increase the flexing of the mechanical container, one should choose higher 
viscosities over higher pump frequencies. Higher viscosities require higher thresholds, 
since a, cc vw5/3, but the tradeoff still works out in favour of higher viscosities. In 
addition, at small viscosities, the damping at rigid surfaces (the sides and bottom) 
goes as v ’ / ~  and thus dominates over the free surface damping, which goes as v (Lamb 
1932, $351). 

Although high viscosities are desirable, one must be careful to check whether the 
fluid is non-Newtonian. This argues against certain silicone oils, which, because they 
are composed of long polymer molecules, readily show non-Newtonian effects. We 
chose instead a vacuum-pump oil (Fisher Scientific, Brand 19), which is a mixture of 
paraffin oils. The molecules used are relatively short chained, and the fluid remains 
Newtonian, even under the considerable shear that is encountered far above the onset 
of surface-wave motion. (Indeed, pump oils are designed to avoid ‘shear thinning’, a 
characteristic non-Newtonian effect that occurs when flow aligns otherwise-entangled 
molecules.) The pump oil that we chose is inexpensive, safe, and available in large 
batches with reproducible fluid properties. Edwards & Fauve (1992, 1993) used 
glycerine-water mixtures in their experiments. The high surface tension and large 
temperature and concentration dependence of the viscosity led us to avoid these 
mixtures. (In particular, that system is sensitive to the concentration shifts and 
gradients caused by the evaporation of water.) 

In the Appendix, we detail our measurements of the relevant fluid properties 
(density p, surface tension y, and kinematic viscosity v) as a function of temperature 
T .  An advantage of measuring the properties ‘in-house’ is that we could ensure 
that the same temperature scale was used for all three quantities and for the actual 
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FIGURE 2. Schematic diagram of a liquid under vertical vibration. 

experiment. Because of the low sensitivity of p and y to temperature, varying T 
changed in effect only v (and hence the damping rates). This allowed us to ‘scan’ 
through another parameter in the experiment and proved useful. 

4.2. Mechanical properties of the container 
Our general design is sketched in figures 2 and 3. As in many previous experiments, 
the vibrations were generated by a shaker table (Bruel & Kjaer model 4809). Working 
on the same principles as loudspeakers, shakers are designed to give clean vertical 
motion with minimal side-to-side motion, which would cause the fluid to slosh back 
and forth, driving waves at accelerations below the true threshold. (We observed this 
motion in an early version of the experiment, which used a loudspeaker rather than 
a shaker table.) It is also important to eliminate container flexing, which will lead 
to variations in the applied acceleration over the cell. In other words, the control 
parameter will be spatially inhomogeneous and the instability will appear first in 
one part of the container and then spread to the rest of the cell. The threshold 
non-uniformity is an important measure of the quality of the experiment. (It is the 
fractional difference between the acceleration needed to destabilize one part of the 
cell and that needed to destabilize the cell everywhere.) In our experiment, vertical 
flexing was reduced by giving the bottom of the container a conical shape. Our 
efforts were only partially successful, and in retrospect a taller cone would have been 
preferable, even if it were heavier. Typical inhomogeneities ranged from 1 to 3%. 
One way we reduced the effects of inhomogeneities was to dynamically balance the 
container by adding small weights to the sides. This reduced the inhomogeneities at 
the cost of some tedium, since a different dynamical balancing was required for each 
operating frequency (for shifts of greater than 10 Hz). Nonetheless, the maximum 
inhomogeneity in the frequency range we used did not exceed other uncertainties, 
such as those arising from the measurement of oil viscosity (see the Appendix). 

The shaker table was screwed into a heavy brass base 30 cm in diameter and 5 
cm thick, filled with lead shot to dissipate any vibrations. Three screws were used to 
level the experiment. We also monitored the contact meniscus with the sidewalls for 
any non-uniformity. 
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FIGURE 3. General sketch of the experimental setup. 

Another concern in the mechanical design is the overall weight of the vibrating 
parts. Because the shaker table generates a maximum force (60 N), the maximum 
achievable acceleration depends on the mass that is moved. In our case, the mass 
of the container and fluid (at its maximum depth of 1.0 cm) was approximately 
500 g ,  leading to accelerations of about 12 g .  (Experiments conducted with shallower 
fluid depths could achieve as high as 17 g, although overheating of the shaker 
table limited the amount of time the highest accelerations could be maintained. We 
take g = 9.8066 m ~ - ~ . )  We made two aluminium sample holders, one round (inner 
diameter 10 cm), the other square (inner width 11.4 cm). The round container had a 
honeycomb array of holes drilled into the bottom to lighten the structure. A similar 
effect was achieved in the square container by a four-armed support attached to its 
underside. 

The shaker table was powered by an audio amplifier (Bryston 4) that was fed the 
reference out sine wave from a lock-in amplifier (Stanford DSP 850; harmonics from 
the reference are -80 dB). The actual acceleration of the container was measured by 
a piezoelectric accelerometer (Briiel & Kjaer 4875) connected to a charge amplifier 
(Bruel & Kjaer 2634) and demodulated by the lock-in. Although the lock-in can 
measure the acceleration to a fractional precision of lop4, we estimate the absolute 
error in the factory-provided calibration of the accelerometer to be 1%. (We checked 
the calibration by measuring the low-frequency displacement of the sample-holder 
using the displacement of a reflected laser beam.) The lock-in allowed us to assess 
the importance of nonlinearities in the response. At frequencies above 20 Hz, the 
amplitude of the second harmonic of the signal was less than 1% of the fundamental. 
Even when the distortions were large, there was no measurable effect on thresholds. 
(This is expected from theoretical considerations since the amplitude of the harmonics 
is always far less than that needed to destabilize the cell at that frequency.) 

4.3. Boundary conditions 
The boundary conditions can play an important role in determining the onset and 
subsequent patterns of waves. Part of our goal was to minimize the role of the 
boundary conditions. In the course of the experiment, we used a number of boundary 
conditions (see figure 4). We could switch from one boundary condition to another 
by gluing different inserts into the sample holder. The sample holder itself was 
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FIGURE 4. Boundary conditions. (a)  Straight sidewalls (wetting); ( b )  brimful conditions 
(non-wetting fluid); (c) sloping sides; ( d )  shelf conditions. 

made of black-anodized aluminium, which was completely wet by the oil. Unless 
otherwise specified, inserts were made of polyvinylchloride plastic, which was also 
wet completely by the oil. The four boundary conditions we used were: 

(a)  straight sidewalls with completely wetting fluid (figure 4a); 
(b )  brimful conditions (Benjamin & Scott 1979; Douady 1990) (figure 4b); 
(c) sloping sides (figure 4c); 
( d )  shelf conditions (figure 4 4 .  
As discussed by Douady (1990), straight sidewalls will emit meniscus waves. Since 

they are directly forced waves, they vibrate at the pump frequency. Moreover, they 
have no threshold and can mask the true threshold for parametrically pumped waves 
(at 0 / 2 ) .  Since the initial surface is no longer flat, the calculations described above 
are no longer strictly valid. 

We made brief experiments using the brimful conditions of Benjamin & Scott (1979) 
and Douady (1990). The advantage of this condition is that the flat interface is a 
rigorous solution to the equations so that no meniscus wave is emitted. To implement 
this condition, one must find a sidewall material on which the oil-air interface has 
a finite contact angle. Both teflon and neoprene rubber had acceptable non-wetting 
properties, but they are far from ideal materials for machining. In practice, good 
alignment of the contact line with the brim is needed to eliminate the wave. 

The third and fourth conditions may be viewed as ways of eliminating reflected 
waves by impedance matching. Since the threshold rises for shallow fluids, a gradual 
decrease (sloping sides) gradually reduces the effective control parameter to zero. For 
the shelf method, the idea was to have a very shallow shelf where parametric waves 
could not be excited and where the meniscus wave from the wall would damp out. 
Here, too, we found it better to have the shelf slope off into the full depth rather than 
form a sharp corner. 

4.4. Temperature control 
Because the viscosity of the fluid changes rapidly with temperature (see the Appendix), 
good temperature control is desirable. In addition, by varying the set-point tempera- 
ture, we could in effect scan the fluid viscosity, which turned out to be an important 
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parameter to control. The entire shaker table and sample holder was enclosed in a 
Plexiglas can with glass top for visualization (figure 2). Since the shaker table itself 
dissipated a sizeable amount of heat (the coils passed 7 A of current), we inserted 
a small brass element with flowing water to carry off this heat. The water was tem- 
perature controlled by a waterbath (Neslab RTE 221) to 0.01 "C. Under the sample 
holder, we glued a film heater (Minco). A platinum RTD under the base measured the 
temperature and allowed feedback control by a Macintosh computer. In steady-state 
operation, the stability was about kO.001 "C. However, direct measurements with a 
thermometer in the fluid showed that there were significant non-uniformities in the 
fluid itself. 

We measured these when controlling the temperature of the fluid at 23 "C, with a 
depth of 1.0 cm. Without shaking, lateral differences were 0.1 "C. They are caused by 
the small size of the water cooler and can easily be eliminated (again, at the cost of a 
heavier sample holder). While shaking, they were less than 0.05 "C. Only a small part 
of the lateral inhomogeneities in the thresholds that we observed was due to these 
gradients. 

The vertical gradients are larger and their effects harder to measure. Without 
shaking, vertical differences were 0.4 "C. They are due to the cooler air (21.9 "C) 
above the surface compared to the temperature control at 23 "C in the base. When 
shaking below onset (2.5 g at 40 Hz), these temperature differences decreased to 
0.02 "C, because of fluid mixing. Above onset (6 g at 40 Hz), the vertical gradients 
became larger again: 0.1 "C. This might be caused by viscous dissipation at the 
surface of the fluid, which can be estimated as (Landau & Lifshitz 1987, p. 92) 

1 2 

= - i q /  (3 + 9) d(vol) - -(vp)(v2k2)(L21) 2 
dt axk axi 

Here, i is the onset wavelength. The volume integral is calculated as though a 
constant shear vk extended a depth 1 below the surface. The fluid velocity v is 
estimated by its inviscid values: v = a/(o/2). The wavenumber is converted to a fre- 
quency via (2.7). Using typical values of v = 1 cm2 s-l, p = 1 g ~ m - ~ ,  a = lo4 cm s - ~ ,  
y =30 dynescm-', and o = 2~(50)  Hz, we find that approximately 1 W is generated. 
This could account for the additional vertical gradient above onset. 

When controlling the temperature of the fluid at 60 "C, vertical gradients reach 
2 "C over 1.0 cm. Again, while shaking, fluid mixing reduces this difference. Since the 
fluid is less viscous at these temperatures, energy dissipation at the surface is smaller 
and has a smaller effect on the original gradient. 

In conclusion, relatively large temperature differences exist in the fluid while making 
threshold measurements, and they cannot be easily controlled or estimated a priori. 
Overall, temperature variations in the cell are approximately 0.4 to 2 "C (depending 
on the working temperature). This uncertainty certainly accounts for some of the 
discrepancies that we observe in thresholds. 

4.5. Visualization 
The aluminium sample holders were sandblasted and anodized black to eliminate 
reflections, so that the light used for visualization reflected off the fluid surface only. 
A ring of 100 red LEDs 28 cm in diameter was placed above the sample at a height 
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FIGURE 5. Visualization of the surface. (a )  When the surface is flat, no light is reflected into the 
camera; (b)  when it is rippled, a range of angles is visualized. 

of 165 cm with a CCD camera at its centre. (See figure 5.) The radius of the ring was 
chosen so that no light was reflected into the camera lens from the flat fluid surface; 
however, an inclined surface of the proper angle will reflect light into the camera. At 
the ring height that we used, the angles visualized ranged from 0.7" to 4.2" over the 
sample surface. One concern is that since only finite-angle surface deformations are 
visible, the acceleration threshold will be overestimated. By lowering the height of 
the LED ring, we checked that these errors were negligable (less than 0.1% on the 
acceleration thresholds) compared to the accelerometer precision. 

The illumination system could be operated continuously or strobed either at the 
pump frequency o (for visualizing meniscus waves) or half the pump frequency 0 / 2  
(for visualizing parametric waves). The strobe duration was approximately 1 ms, and 
the phase relative to the trigger could be adjusted continuously. When strobed at 
w / 2 ,  stripe patterns were seen as two lines per wavelength, with the light reflected 
from the trough brighter than that from the crest. By strobing at o and then o/2,  
one could determine whether a given pattern was harmonic (a meniscus wave) or 
subharmonic (a parametrically generated wave). 

The advantages of this illumination system are its crisp images and the ease of 
their interpretation. (Since the light-emitting element of each LED is less than a 
millimetre square, it subtends an angle of less than rad and light rays can be 
taken as coming from a one-dimensional ring.) The disadvantages are that very 
small-amplitude distortions cannot be seen, that one does not have a continuous 
image of the height displacement, and that the strobe rate could combine with the 
60 Hz strobe rate of the CCD camera to give unpleasant flashing effects on the TV 
monitor. 
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5. Experimental results 

Our first goal was to see whether we could find circumstances where the infinite- 
depth, infinite-width equations accurately predicted the onset acceleration and wave- 
length. (In the calculation sketched above in $2, this corresponds to setting h = 00.) 

The data shown in figure 6 demonstrate that such agreement can be achieved. The 
sample was the round container, with a depth of 1.0 cm, and a working temperature 
that varied between 22.0 "C to 22.7 "C. Similar results were obtained with the various 
boundary conditions. The two sets of data points in figure 6(a) represent the lower 
and upper bounds on the critical acceleration. The lower bound represents the lowest 
acceleration at which any part of the surface had destabilized. The upper bound 
represents the acceleration at which the entire cell had destabilized. The two solid 
lines delimit the range of possible theoretical predictions based on the temperature 
inhomogeneities and the uncertainty in the absolute value of the viscosity (6%). To 
within an overall absolute accuracy of 8%, the linear-stability analysis agrees with 
experiment, with no parameters fit. Similarly, figure 6(b) shows agreement for the 
wavelength of the instability at onset. The dashed lines in figures 6(a) and 6(b) are 
the predictions based on the Mathieu equation (2.1) with the usual phenomenological 
damping term (2vk2). In these experiments, the ratio vk2/ (0 /2)  varied from 0.20 at 
20 Hz to 0.43 at 70 Hz. (The inverse of this ratio is just the quality factor of the 
excited mode.) We have also seen that thresholds measured in vacuum match those 
in air. (This is not surprising, as one expects the extra dissipation to be of order 

Such absolute agreement has been seen in only a few other experiments on hydro- 
dynamic instabilities, for example Rayleigh-Benard convection (Silveston 1958) and 
Taylor-Couette flow (Taylor 1923). (For a review of more recent measurements at 
and above thresholds in these systems, see Ahlers 1990.) Of course, no one doubts the 
validity of the Navier-Stokes equations or the general formalism of linear-stability 
analysis; rather, the question is whether the source of energy dissipation that has 
been taken into account (bulk viscosity along the surface) is sufficient to describe the 
fluid and whether all of the necessary restoring forces on the interface (which fix the 
wavelength via the dispersion relation) have been taken into account. We remind the 
reader that in our theoretical calculations, we have ignored dissipation due to the 
bottom surface, the sidewalls, the contact line, the air motion, and any surfactant 
film. Within our working accuracy of 8%, our data support this neglect. 

Most of the uncertainty in figure 6 is systematic error. Much of it resides in the 
calibration of the accelerometer and in the measurement of the fluid viscosity. Most 
of the rest comes from temperature gradients. The first two errors may be readily 
reduced, but the last would require a substantial redesign of the experiment. In any 
case, the accuracy suffices to make our basic point: by properly choosing the fluid 
viscosity, the pump frequency, the cell width and depth, we can find close agreement 
between theory and experiment. Most of the rest of our experiments were aimed at 
showing systematically how complications arise as these are abandoned one by one. 

The lower frequency limit to the data in figure 6 is set by the maximum displacement 
of our shaker table (0.8 cm), which severely limits the acceleration at low frequencies. 
By raising the fluid temperature (reducing the viscosity), we could explore lower 
frequencies, where wavelengths are longer and begin to be comparable to the fluid 
depth. Figure 7 shows a 0.24 cm deep fluid in the same cell, at a fluid temperature of 
55.4 "C f0.6 "C. In this and the following data, we have adjusted the temperature used 
for our theoretical prediction (within the range given above) so that one point (at large 

r a i r / r o i l  
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FIGURE 6. Threshold and wavelength measurements for oil at 23 "C in a round container of diameter 
10 cm and depth 1.0 cm. (a) Acceleration thresholds. The solid lines are numerical calculations 
using the Kumar & Tuckerman method, taken at 21 "C (upper) and 23 "C (lower). The dashed line 
is an estimate based on the perturbative theory (a, = 4vkw). (b )  Wavelength just above onset. The 
solid lines are numerical calculations at 21 "C (lower) and 23 "C (upper), and the dashed line is the 
perturbative estimate (see $2). The calculations and estimates are for h = co. Boundary condition 
'a' was used for these data and for the rest of the data shown in this section. 

accelerations) matches the data. At the same time, we adopted a consistent criterion 
for the destabilization of the interface. (We defined the threshold as corresponding to 
destabilization everywhere in the cell.) We view this as a crude 'one-parameter7 fit that 
eliminates the trivial calibration errors discussed above. The data in figure 7 show 
the high precision with which the data match the theoretical predictions. Unlike the 
previous case, the shallow depth means that viscous damping at the bottom of the cell 
cannot be neglected. Indeed, as the wavelength becomes large compared to the depth, 
the threshold diverges towards infinity. The dashed curve shows the infinite-depth 
prediction. (This curve is not the perturbative prediction discussed above; it is the 
same curve that agrees with the experimental data in figure 6.) 

The careful reader will note a small deviation at the lowest frequencies between the 
data in figure 7 and the theoretical prediction. Although small, the deviations are real 
and significant. As we shall show, they reflect damping by the sidewalls. Figure 8, 



Parametric resonance in viscous JEuids 34 1 

3 

2 3 2  

8 1 -  

Y 
.... 

____*..-- 
0 --------- 

I I I I 

0 10 20 30 40 50 I 

U 
I I I I I 

0 10 20 30 40 50 I 3 
Drive frequency (Hz) 

FIGURE 7. Threshold measurements for oil at 55 "C in a square container of width 11.4 cm and 
depth 0.24 cm. The solid line is the finite-depth numerical calculation; the dashed line is the 
infinite-depth one. 

which differs from figure 7 in that the depth is greater, shows an instance where these 
deviations are large. The solid line is the finite-depth, finite-viscosity prediction; i.e. it 
is the same type of curve that matches the experimental data in figure 7 .  

Note the oscillations in the threshold that are present in ever-greater amplitude at 
low frequencies. (The careful reader can find hints of such oscillations in figure 7 . )  
These oscillations are the signature of mode quantization, as mentioned at the end 
of $2. At higher frequencies, there is in effect a continuum of modes available to the 
system, since the mode spacing becomes less than the width of each mode. The mode 
spacing is roughly n/L ,  while the width of each mode is roughly 

Ak " n l e d e c a y .  (5.1) 

The condition for having a continuum of modes is thus equivalent to L * e d e c a y  - 
y/4vpo, as discussed in $4.1. In practice, the 'soft' boundary conditions we use increase 
Ak beyond n/f!decay and allow access to the 'infinite-cell' regime at lower frequencies 
than (5.1) would suggest. The threshold oscillations that we see at low frequencies are 
in fact the bottoms of parametric-resonance tongues (see $2 and figure 1). The small 
inset images in figure 8 are examples of patterns obtained at different frequencies. 
Each tongue corresponds to a distinct shift in observed wave pattern at onset. Patterns 
at higher frequencies correspond to situations where the range of modes is effectively 
continuous. Note that the transition from the complicated 'modal patterns' associated 
with each parametric-resonance tongue to squares coincides with the disappearance 
of oscillations in the threshold curve, reflecting the passage from a small to a large 
cell. Patterns in the low-frequency case are described by dynamical systems, while 
in the high-frequency case, they are described by amplitude equations with spatially 
dependent order parameters (Cross & Hohenberg 1993). The mechanism for the 
selection of square patterns selected by low-viscosity fluids in large cells has been 
previously studied experimentally and theoretically (see Milner 199 1). We shall say 
little about the special features of small sample cells, as they have been extensively 
discussed before (see the references cited in the introduction). 

The dashed curve in figure 8 is merely a guide to the eyes. It represents the 
threshold curve in the absence of mode quantization. Because the actual thresholds 
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FIGURE 8. Threshold measurements for oil at 55 "C in a square container of width 11.4 cm and 
depth 0.7 cm. The solid line is the finite-depth numerical calculation. The dashed line represents 
the threshold curve in the absence of mode quantization (only the tongue minima are shown). The 
insets show wave patterns at onset for different frequencies. 

Drive frequency (Hz) 

are larger than the predictions, we conclude that another source of energy dissipation 
is present. Although it is possible to calculate the dashed curve from first principles, 
we have not tried to do so. The only situation that one could imagine treating 
precisely is the brimful boundary condition. For convenience, most of our work did 
not use this condition. As mentioned in $2, the other boundary conditions all lead to 
meniscus waves that invalidate the stationary solution assumed in the linear-stability 
analysis. Thus, not only would it become necessary to find a set of eigenfunctions that 
obey the sidewall conditions, it would also be necessary to perturb off a complicated 
initial state. Faced with these difficulties, we chose to explore the nature of the extra 
dissipation experimentally. 

Figure 9(a) shows three threshold curves taken at different sample widths in 
otherwise-identical circumstances. Here, we have removed all points from the sides 
of the tongues for clarification (i.e. we have left only those points that correspond 
to the bottom of the tongues). Note that the smaller the fluid cell, the greater the 
dissipation. In figure 9(b), we see too that the tongue oscillations increase as the cell 
is made smaller, reflecting the relative paucity of modes in smaller containers. 

Figures 10(a) and 10(b) show similar measurements for fixed cell size (11.4 cm) and 
varying fluid depths. As the fluid is made shallower, the deviation from the predicted 
curves decreases (figure 10a). The deeper cells show larger oscillations (figure lob). 
We can qualitatively explain why the oscillations are larger by recalling that for 
shallow cells, the added dissipation due to shear at the bottom of the cell will broaden 
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FIGURE 9. Threshold measurements for oil at 55 "C in a square container of depth 1.0 cm and 
varying width. (a) As in figure 8, only the minima of the oscillations at low frequency are shown. 
(b)  Oscillations at low frequency (complete data). The dashed lines, outlining the extrema of the 
oscillations, are guides to the eyes. For this figure, the 6.3 cm width curve was offset by +0.25 g , 
the 11.4 cm width curve by -0.15 g to aid visualization. 

the resonance tongues. This will tend to wash out the deviations from the threshold 
envelope curve, for much the same reason that the frequency response of ordinary 
simple harmonic resonance broadens when the damping is large. 

To summarize these observations, we can define a rough measure of the deviation 
from theoretical predictions. Let a, be the minimum value of the accleration threshold 
for the theoretical prediction. Let a, be the minimum value of the experimentally 
measured acceleration threshold (not necessarily at the same frequency as a,). Then, 
we define the relative deviation D = la, - a,l/a,. In figure 11, we plot D against the 
ratio h/L,  where h is the fluid depth and L the square container size. In 9 6, we 
argue that dissipation at the sidewalls can account for this extra deviation. (Since 
the fluid wets the sidewalls in these experiments, there is no anomalous contact-line 
dissipation. Any surface contamination would have prevented the agreement seen in 
the high-frequency data.) 
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FIGURE 10. Threshold measurements for oil at 55 "C in a square container of width 11.4 cm and 
varying depth. (a) Log-log plot of the acceleration thresholds. As in figures 8 and 9(a), only the 
minima of the oscillations at low frequency are shown. ( b )  Oscillations at low frequency (complete 
data). For this figure, the 0.24 cm depth curve was offset by -0.35 g, the 1.0 cm depth curve by 
$0.25 g to aid visualization. 

6. Discussion 
We have shown that the theoretical model of Kumar & Tuckerman (1994) agrees 

quantitatively with experimental observation when a number of precautions are 
observed. These precautions are that 

1. the surface tension is low enough to prevent contamination by an adsorbed layer 
of molecules; 

2. the frequency is high enough and the ratio h / L  is small enough. 
At any given depth, we can always go to an 'infinite-width' limit by making the 

frequency large enough. (See figure 10a.) We also see that the ratio h / L  must be made 
small. (Just how small depends on the operating frequency. The measure of deviation 
discussed above is a worst-case scenario because we have scanned frequencies. At 
higher frequencies, the deviations are smaller in any given situation.) 

Although there are good reasons for making h / L  small, there are also reasons for 
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FIGURE 1 1 .  Deviation of experimental data from theoretical predictions. The estimate 

D = la, - a,l/a, is used, and the results were fit to a line. 

not making the depth too small. If one can place oneself in the situation of figure 6, 
then the infinite-depth calculations may be relevant. While there may not seem to 
be any need to do this for threshold measurements, this may be useful for modelling 
nonlinear phenomena. (Note the enormous difference in complexity between the 
infinite- and finite-depth dispersion relations.) Of course, one must still check whether 
depth effects are important for large wave amplitudes. At threshold, the depth may 
be effectively infinite while above threshold the finite depth may become important. 

We conclude, too, that the very shallow depths (0.2 to 0.3 cm) used by Edwards 
& Fauve (1993) and Muller (1993) are perhaps overly conservative. The fluid can 
be deep enough that the thresholds at the desired frequencies are essentially at their 
infinite-depth values, while at the same time shallow enough that long-wavelength 
perturbations are still strongly damped. To give an explicit example (using the 
estimates of damping rates at shallow depths given below), if we use our oil at 55 "C, 
with an excitation frequency of 50 Hz, a cell size of 12 cm and a depth of 0.4 cm, the 
onset acceleration predicted by the finite-depth theory exceeds the infinite-depth result 
by only 0.4%. Here, the damping rate of the longest possible wavelength roughly 
equals cc) and thus these wavelengths decay rapidly. For a depth of 0.24 cm, the onset 
acceleration exceeds the infinite-depth prediction by 16%. Edwards & Fauve argued 
that for deep fluids in wide basins, long-wavelength modes would be damped so slowly 
that one would need to couple them to the amplitude equations near onset. Although 
their argument is valid, they perhaps over-estimated the shallowness actually needed 
to avoid long-wavelength dynamics. 

A crude argument to understand why the relative deviations from the model are 
proportional to h / L  can be constructed in analogy to that used by Milner (1991) to 
estimate wall damping for infinite depth. The goal is to estimate the ratio between 
the damping rate due to sidewall friction and that due to damping over the entire 
free surface. For shallow fluids, we expect, following (4.1), that the energy dissipation 
due to the sidewalls is 

where the shear rate is v/h (v the fluid velocity, h the depth), and we have assumed 
that the wall damping extends throughout the depth of the cell and to a distance 
away from the walls equal to the depth. (This last assumption is perhaps the most 
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tenuous of those made.) The energy stored in the fluid is 
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E - pu2(L2h), 

where we have assumed that ‘surface waves’ dissipate energy over the entire fluid 
volume L2h. The ratio of these two quantities gives the damping rate due to the walls, 

The sidewall damping is to be compared to the damping at the free surface for 
waves whose wavelength equals the depth. (In our definition of the ‘deviation’, we 
scanned frequencies and selected the frequency at which the finite-depth effects are 
significant.) The expression (4.1) is modified by replacing k with h-’, leading to 
p - v/h2. 

The ratio of the damping to the walls to the damping at the free surface is 

pw v h2 h ------ 
p Lh v L’ 

which is the experimental result. For small h /L ,  we can thus neglect sidewall damping. 
Finally, we note that there are definite advantages to using high-viscosity fluids. As 

Edwards & Fauve (1993) have argued, for low-viscosity fluids, the coherence length c 
of wave oscillations is many times the actual wavelength. (The coherence length may 
be defined to be 2n/Ak, where Ak is the range of wavenumbers that are unstable to 
infinitesimal perturbations. Physically, 5 is roughly the decay length /decay discussed in 
$34.1 and 5.) The aspect ratio of the system, which measures how many independent 
‘patterns’ will fit into the sample geometry, is properly defined to be the ratio of the 
system size L to the coherence length 5 and not L/ I .  

In figure 12, we use the tongues found in figure 1 to plot the ratio of [ to 1 as a 
function of the distance above onset. Near onset, the ratio is always large because 
of well-known critical effects in the vicinity of a forward bifurcation. Farther above 
onset, we see that for water at 20 “C, this ratio is several hundred, while for our 
oil it becomes close to one. If the bare correlation length is large compared to 
1, then even far above onset, there will be correlations over long lengths. This has 
important implications for the interpretation of Faraday experiments on low-viscosity 
fluids, such as those by Christiansen et al. (1992) and Gluckman et al. (1993). In 
the former, standing wave resonances of 3, 4, 5, and higher numbers of waves were 
formed by reflecting off the walls of a circular container. In the latter, it was observed 
that even when the wave pattern was highly disordered, the boundaries nonetheless 
managed to influence the pattern over the entire cell via a ‘phase rigidity’ that was 
clearly seen by averaging many images of the interface (cf. Cross & Hohenberg 1993, 
pp. 882-883 for a discussion of the phase as a ‘rigid’ variable). In retrospect, the 
unusual features of these experiments, as compared to, say, convection, come from 
having been conducted in this new limit of pattern formation. It would be interesting 
to see if by multi-scale analysis one can derive appropriate asymptotic equations 
that capture the combination of slow spatial and fast temporal variations that these 
patterns display. 

7. Conclusion 
We have conducted systematic measurements of the threshold accelerations in 

the Faraday experiment, using a viscous, non-polar fluid. By proper experimental 
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FIGURE 12. Ratio of the coherence length to the wavelength, calculated by the Kumar & Tuckerman 
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design, the sources of dissipation that determine these thresholds may be controlled. 
In particular, we see when damping at the bottom and sides of the cell becomes 
important and when it may be neglected. By using a non-polar fluid, we avoid 
problems of surface contamination. An understanding of the linear-stability analysis 
is important not only to check the physical models employed but also to design 
experiments to be conducted in the nonlinear regime. Misunderstanding of the linear 
problem has led to some confusion over the interpretation of previous experiments. 
On the positive side, we have used the insights gained in this analysis to explore 
secondary instabilities in the Faraday experiment. We hope to report on these in the 
near future. 
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Appendix. Measurement of fluid properties 
One advantage of measuring fluid properties 'in-house' is that the same temperature 

scale is used for both the measurements and the actual experiments. In view of the 
large temperature dependence of the viscosity, this is important. The temperature 
scales used in our experiment were compared against a standard platinum resistance 
and have an absolute accuracy of about 0.2 "C. Below, we describe separately 
measurements of density, surface tension, and viscosity. 

A. 1. Density 
The density was measured using a 250 ml volumetric flask. The fluid level was 
adjusted while the flask was immersed in a water bath at the desired temperature. 
The flask was removed from the bath, dried in an oven, and weighed. (Since pump 
oil has a low vapour pressure, there was no problem of evaporation.) Our results are 
shown in figure 13(a) and were fit to a straight line. Fit residuals were about 0.1%. 
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FIGURE 13. (a) Density measurements for the oil. (b)  Surface tension measurements for the oil. 
(c )  Kinematic viscosity measurements for the oil. 
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A.2. Surface tension 
The surface tension was measured using the ring method (Adamson 1990, pp. 23-25). 
The torque needed to lift off a ring of platinum wire is measured by a standard 
apparatus (Fisher Surface Tensiometer Model 20). The temperature of the oil was 
varied by placing it in a beaker with a circulating water jacket; the actual surface 
tension was measured for different bath temperatures. The results are shown in 
figure 13(b) and were fit to a quadratic polynomial. Fit residuals were about 1%. 

A.3. Viscosity 
The viscosity q was measured by the Ostwald method (Hatschek 1928, pp. 24-29), 
which in effect measures the velocity of Poiseuille flow. The measurement is relative 
to a known fluid (toluene). To do this, the velocity of the trailing meniscus of 
the fluid is measured by timing its fall past two sets of LEDs and photodiodes. 
The idea is to make the flow pass through a narrow capillary tube, whose viscous 
dissipation dominates over other parts of the cell. The whole apparatus is surrounded 
by temperature-controlled water. Our measurements were converted to kinematic 
viscosities v = q / p  and are shown in figure 13(c). They were fit to an Arrhenius 
formula (Nagel 1991, p. 131). Fit residuals were about 6%, which is roughly the 
absolute accuracy that we observed for measurements on toluene. 
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